
MTH 201: Multivariable Calculus and Differential Equations

Semester 1, 2014-15

1. Three-dimensional geometry

1.1. Lines and planes.

(i) Vector, parametric, and symmetric equation of a line.

(ii) Vector and scalar equations of a plane.

1.2. Cylinders and quadric surfaces.

(i) Cylinders with examples.

(ii) General equation of a quadric surface with examples.

2. Multivarable Differential Calculus

2.1. Scalar and vector fields.

(i) Scalar and vector fields.

(ii) Open balls and open sets.

(iii) Interior, exterior, and boundary of a set.

(iv) Theorem: If A1 and A2 are open sets in R1, then A1 × A2 is open

in R2.

2.2. Limits and continuity.

(i) Limits and continuity.

(ii) Theorem: If lim
x→a

f(x) = b and lim
x→a

g(x) = c, then:

(a) lim
x→a

(f(x) + g(x)) = b+ c

(b) lim
x→a

λf(x) = λb, for every scalar λ

(c) lim
x→a

f(x)g(x) = bc

(d) lim
x→a
‖f(x)‖ = ‖b‖

(iii) Components of a vector field.

(iv) Theorem: A vector field is continuous if and only if each of its

components are continuous.

(v) The identity function and polynomial functions are continuous on

Rn.

(vi) The composition of two continuous functions is continuous.
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(vii) Example of a discontinuous scalar field that is continuous in each

variable.

(viii) Derivative f ′(a; v) of a scalar field f with respect to a vector v.

(ix) Mean Value Theorem (for scalar fields) : Let f ′(a + tv, v) exist

for each t ∈ [0, 1]. Then for some real number θ ∈ (0, 1), we have

f(a+ y)− f(a) = f ′(z; y), where z = a+ θv.

2.3. Directional, partial and total derivatives.

(i) Directional derivatives and partial derivatives.

(ii) Directional derivatives and continuity.

(iii) Differentiable scalar field.

(iv) The total derivative.

(v) Theorem: If f is differentiable at a with total derivative Ta, then

the derivative f ′(a; v) exists for every a ∈ Rn, and we have

Ta(v) = f ′(a; v).

Moreover, if v = (v1, . . . , vn), we have

f ′(a; v) =
n∑

k=1

Dkf(a)vk.

2.4. Gradient and tangent planes.

(i) The gradient of a scalar field.

(ii) Theorem: If a scalar field is differentiable at a, then f is contiun-

uous at a.

(iii) Sufficient condition for differentiability: If f has partial derivatives

D1f, . . . , Dnf in some n-ball B(a) and are continuous at a, then

f is differentiable at a.

(iv) Theorem (Chain rule for scalar fields): Let f be a scalar field

defined on an open set S in Rn, and let r be a vector-valued

function which maps an interval J from R1 into S. Define the

composite g = f ◦ r on J by the g(t) = f(r(t)), if t ∈ J . Let

t ∈ J such that r′(t) exists and assume that f is differentiable at

r(t).Then g′(t) exists and is given by

g′(t) = ∇f(a) · r′(t),

where a = r(t).
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(v) Level sets and tangent planes.

2.5. Derivatives of vector fields.

(i) Derivatives of vector fields.

(ii) Theorem: If f is differentiable at a with total derivative Ta, then

the derivative f ′(a; v) exists for every a ∈ Rn, and we have

Ta(v) = f ′(a; v).

Moreover, if f = (f1, . . . , fm) and v = (v1, . . . , vn), we have

Ta(v) =
m∑
k=1

∇fk(a) · ek = (∇f1(a) · v, . . . ,∇fm(a) · v).

(iii) Theorem: If a vector field is differentiable at a, then f is continuous

at a.

(iv) Theorem (Chain Rule): Let f and g be vector fields such that

the composition h = f ◦ g is defined in a neighborhood of a point

a. Assume that g is differentiable at a, with total derivative

g′(a). Let b = g(a) and assume that f is differentiable at b, with

total derivative f ′(b). Then h is fifferentiable at a, and the total

derivative h′(a) is given by

h′(a) = f ′(b) ◦ g′(a).

(v) Matrix form of chain rule.

(vi) Theorem (A sufficient condition for equality of mixed partial

derivatives): Assume f is a scalar field such that the partial

derivatives D1f , D2f , D1,2f , and D2,1f exist on an open set

S. If f(a, b) is a point in S at which both D1,2f and D2,1f are

continuous, we have

D1,2f(a, b) = D2,1f(a, b).

(vii) Theorem (Sufficient condition for equality of mixed partial deriva-

tives): Assume f is a scalar field such that the partial derivatives

D1f , D2f , and D2,1f exist on an open set S containing. As-

sume further that D2,1f if continuous on S. Then the derivative

D1,2f(a, b) exists and we have

D1,2f(a, b) = D2,1f(a, b).
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3. Applications of derivatives

3.1. Partial differential equations.

(i) First order PDE of the form

a
∂f(x, y)

∂x
∂x+ b

∂f(x, y)

∂y
= 0.

(ii) Theorem: Let g be differentiable on R1, and let f be the scalar

field defined on R2 by the equation

f(x, y) = g(ax− by),

where a and b are constants, not both zero. Then f satisfies the

first-order PDE

(1) a
∂f(x, y)

∂x
∂x+ b

∂f(x, y)

∂y
= 0

everywhere in R2. Conversely, every differentiable solution neces-

sarily has the form g(x, y) = f(ax− by).

3.2. The one-dimensional wave equation.

(i) the one-dimensional wave equation

∂2f

∂t2
= c2

∂2f

∂x2
.

(ii) Theorem (D’Alembert’s solution to the wave equation): Let F

and G be given by functions such that G is differentiable and F

is twice differentiable on R1. Then the function f is given by the

formula

f(x, t) =
F (x+ ct) + F (x− ct)

2
+

1

2c

∫ x+ct

x−ct
G(s)ds

satisfies the wave equation

∂2f

∂t2
= c2

∂2f

∂x2

and initial conditions f(x, 0) = F (x), D2f(x, 0) = G(x). Con-

versely, any function with equal mixed partials which satisfies the

wave equation necessarily has the above form.
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3.3. The derivative of functions defined implicitly.

(i) Theorem: Let F be a scalar field diferentiable on an open set T

in Rn. Assume that the equation

F (x1, . . . , xn) = 0

defines xn explicitly as a differentiable function of x1, . . . , xn−1,

say

xn = f(x1, . . . , xn−1),

for all (x1, . . . , xn−1) in an open set S ⊂ Rn−1. Then for each

k = 1, 2, . . . , n − 1, the partial derivative Dkf is given by the

formula

Dkf = −DkF

DnF

for all points at which DnF 6= 0. The partial derivatives Dkf and

Dnf are to be evaluated at (x1, x2, . . . , xn−1, f(x1, . . . , xn−1)).

(ii) Jacobian determinant notation
∂(f1, . . . , fn)

∂(x1, . . . , xn)
.

(iii) Suppose that we have two surfaces with implicit representations

F (x, y, z) = 0 and G(x, y, z) = 0 that intersect along a curve C.

Suppose that it is possible to solve x and y in terms of z, and

the solutions are given by the equations x = X(z) and y = Y (z).

Then

X ′(z) =
∂(F,G)/∂(y, z)

∂(F,G)/∂(x, y)
, Y ′(z) =

∂(F,G)/∂(z, x)

∂(F,G)/∂(x, y)
.

3.4. Maximum and minimum values.

(i) Local maximum and minimum values of a function.

(ii) Theorem: A scalar field f(x, y) has a local maximum or minimum

at (a, b) and the first-order partial derivatives of f exist there,

then fx(a, b) = fy(a, b) = 0.

(iii) Critical (or stationary) points and saddle points of a function.

(iv) Theorem (Second-derivative test): Let (a, b) be a critical point of a

scalar field f(x, y) with continuous second-order partial derivatives

in a 2-ball (or disk) with center (a, b). Let A = fxx(a, b), B =
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fxy(a, b), C = fyy(a, b), and let

D = det

[
A B

B C

]
= AC −B2.

Then we have:

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is neither a local maximum nor a local

minimum (or (a, b) is a saddle point).

(d) If D = 0, then the test is inconclusive.

(v) Theorem (Extreme value theorem): If a scalar field f(x, y) is

continuous on a closed and bounded (i.e. compact) set A ∈ R2,

then f attains its absolute maximum and absolute minimum values

at points in A.

(vi) Absolute maximum and minimum values.

(vii) Theorem (Lagrange’s Theorem): Let f and g have continuous

partial derivatives such that f has an extremum at a point (a, b)

on the smooth constraint curve g(x, y) = c. If ∇g(a, b) 6= 0, there

exists a real number λ such that

∇f(a, b) = λ∇g(a, b).

(viii) Method of Lagrange multipliers: Let f and g satisfy the hypothesis

of Lagrange’s Theorem, and let f have a maximum or minimum

subject to the constraint g(x, y) = k. To find the extremal values

of f , we use the following steps:

Step 1: Simultaneously solve the equations ∇f(x, y) = λg(x, y)

and g(x, y) = k by solving the following system of equations.

fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = k

Step 2: Evaluate f at each solution point obtained in Step 1. The

largest value yields the maximum of f subject to the constraint,

and the smallest value yields the minimum of f subject to the

constraint.
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4. multivariable integral calculus

4.1. Double Integrals.

(i) Intepreting the double inegral as volume of the solid bounded

below by a region R and above by z = f(x, y).

(ii) Double integrals over a rectangular region R : [a, b]× [c, d].

(iii) Thorem (Fubini weaker form): If f(x, y) is continuous throughout

the region R : [a, b]× [c, d], then∫∫
R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx.

(iv) Double integrals over a general region R.

(v) Thorem (Fubini stronger form): Let f(x, y) be continuous on a

region R.

(a) If R is defined by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), with g1 and

g2 continuous on [a, b], then∫∫
R

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx.

(b) If R is defined by c ≤ y ≤ d, h1(x) ≤ x ≤ h2(x), with h1 and

h2 continuous on [c, d], then∫∫
R

f(x, y)dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y)dxdy.

(vi) If f(x, y) and g(x, y) are continuous on the bounded region R,

then the following properties hold.

(a)

∫∫
R

cf(x, y)dA = c

∫∫
R

f(x, y)dA, for any c ∈ R.

(b)

∫∫
R

(f(x, y)± g(x, y))dA =

∫∫
R

f(x, y)dA±
∫∫

R

g(x, y)dA.

(c)

∫∫
R

f(x, y)dA ≥ 0, if f(x, y) ≥ 0 on R.

(d)

∫∫
R

f(x, y)dA ≥
∫∫

R

g(x, y)dA, if f(x, y) ≥ g(x, y) on R.

(e)

∫∫
R

f(x, y)dA ≥
∫∫

R1

f(x, y)dA+

∫∫
R2

f(x, y)dA, if R is the

union of two nonoverlapping regions R1 and R2.
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(vii) The area of a closed, bounded plane region R is given by

A =

∫∫
A

dA.

(viii) The average value of an integrable function f over a region R of

area A is given by

The average value of f over R =
1

A

∫∫
R

f dA.

4.2. Triple integrals.

(i) Integrability of F (x, y, z) over a closed, bounded region D in R3.

(ii) The volume of a closed, bounded region D in space is given by

V =

∫∫∫
D

dV.

4.3. Substitution in multiple integrals.

(i) Theorem (Substitution in double integrals): Suppose that a region

G in the uv-plane is transformed one-to-one into a region R in

the xy-plane by equations of the form x = g(u, v) and y = h(u, v).

Then any function f(x, y) defined on R can be thought of as a

function f(g(u, v), h(u, v)) defined on G. Moreover, if g, h, and

f have continuous partial derivatives and ∂(x,y)
∂(u,v)

is zero only at

isolated points, then∫∫
R

f(x, y) dx dy =

∫∫
G

f(g(u, v), h(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
(ii) Theorem (Substitution in triple integrals): Suppose that a region

G in the uvw-space is transformed one-to-one into a region R in the

xyz-space by equations of the form x = g(u, v, w), y = h(u, v, w),

and z = k(u, v, w). Then any function f(x, y, z) defined on R

can be thought of as a function f(g(u, v, w), h(u, v, w), k(u, v, w))

defined on G. Moreover, if g, h, and k have continuous first partial

derivatives and ∂(x,y)
∂(u,v)

is zero only at isolated points, then∫∫∫
D

f(x, y) dx dy dz =

∫∫∫
G

f(g(u, v, w), h(u, v, w), k(u, v, w))

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw.
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4.4. Double integrals in polar coordinates.

(i) Polar Coordinates represent a point P by the ordered pairs (r, θ)

in which

(a) r is distance of P from ther origin O, and

(b) θ is the directed angle from the initial ray originating at O

(along the positive direction of x-axis) to the ray OP .

(ii) The rectangular (x, y) and polar (r, θ) coordinate systems are

related by the following set of equations

x = r cos θ, y = r sin θ, r2 = x2 + y2, and tan θ =
y

x
.

(iii) Theorem: The area of a closed and bounded region R in polar

coordinates is given by

A =

∫∫
R

r dr dθ.

(iv) Theorem (Double integral in polar coordinates): Suppose that a

region G in the rθ-plane is transformed one-to-one into a region

R in the xy-plane by polar equations of the form x = r cos θ and

y = r = sin θ. Then∫∫
R

f(x, y) dx dy =

∫∫
G

f(r cos θ, r sin θ)r dr dθ.

4.5. Triple integrals in cylindrical and spherical cordinates.

(i) Cylindrical coordinates represent a point P in space ordered by

triples (r, θ, z) in which

(a) r and θ are the polar coordinates of the verical projection of

P onto the xy-plane, and

(b) z is the rectangular vertical coordinate.

(ii) The equations relating rectangular (x, y, z) and cylindrical (r, θ, z)

coordinates are:

x = r cos θ, y = r sin θ, z = z,

r2 = x2 + y2, tan θ =
y

x
.

Theorem (Triple integral in cylindrical coordinates): Suppose that

a region G in the rθz-space is transformed one-to-one into a region
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R in the xyz-space by cylindrical equations of the form x = r cos θ,

y = r sin θ, and z = z. Then∫∫∫
R

f(x, y, z) dx dy dz =

∫∫∫
G

f(r cos θ, r sin θ, z)r dz dr dθ.

(iii) Spherical coordinates represent a point P in space ordered by

triples (ρ, φ, θ) in which

(a) ρ is the distance from P to the origin,

(b) θ is the angle from cylindrical coordinates (0 ≤ θ ≤ 2π), and

(c) φ is the angle OP makes with the positive z-axis (0 ≤ φ ≤ π).

(iv) The equations relating spherical (ρ, θ, φ) to cartesian (x, y, z) and

cylindrical (r, θ, z) coordinates are:

r = ρ sinφ, x = r cos θ = ρ sinφ cos θ,

z = ρ cosφ, y = r sin θ = ρ sinφ sin θ,

ρ =
√
x2 + y2 + z2 =

√
r2 + z2.

(v) Theorem (Triple integral in spherical coordinates): Suppose that

a region G in the ρφθ-space is transformed one-to-one into a

region R in the xyz-space by spherical equations of the form

x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cosφ. Then∫∫∫
R

f(x, y, z) dx dy dz =

∫∫∫
G

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρ dφ dθ.

4.6. Line integrals.

(i) Line Integral: Let F be a vector field with continuous components

defined along a smooth curve C parametrized by r(t), t ∈ [a, b].

Then the line integral of F along C is∫
C

F · T ds =
∫
C

(
F · dr

ds

)
ds =

∫
C

F · dr =
∫ b

a

F (r(t)) · dr
dt
dt.

r = ρ sinφ, x = r cos θ = ρ sinφ cos θ,

z = ρ cosφ, y = r sin θ = ρ sinφ sin θ,

ρ =
√
x2 + y2 + z2 =

√
r2 + z2.
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(ii) Let C be a smooth curve parametrized by r(t), t ∈ [a, b], and F

be a continuous force field over a region containing C. Then the

work done in moving an object from the point A = r(a) ro the

point B = r(b) along C is given by

W =

∫
C

F · T ds =
∫ b

a

F (r(t)) · dr
dt
dt.

(iii) Let F =Mi+Nj+Pk defined along the smooth curve C : r(t) =

g(t)i+ h(t)j + k(t)k, t ∈ [a, b]. Then the equivalent forms of the

work integral are:

W =

∫
C

F · T ds

=

∫
c

F · dr

=

∫ b

a

F · dr
dt
dt

=

∫ b

a

(
M
dx

dt
+N

dy

dt
+ P

dz

dt

)
dt

=

∫
C

M dx+N dy + P dz.

(iv) If r(t) parametrizes a smooth curve C in the domain of a continuous

velocity field F , then the flow along the curve from A = r(a) to

B = r(b) is given by ∫
C

F · T ds.

(v) If C is a smooth simple closed curve in the domain of a continuous

vector field F =M(x, y)i+N(x, y)j in the plane, and if N is the

outward pointing unit normal vector on C, the flux of F across C

is given by ∫
C

F · n ds.

Furthermore, if F =Mi+Nj, then the flux of F across C is given

by ∫
C

M dy −N dx.
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4.7. Green’s Theorem.

(i) The divergence (or the flux density) of a vector field F =Mi+Nj

at the point (x, y) is

divF = ∇ · F =
∂M

∂x
+
∂M

∂y
.

(ii) The circulation density of a vector field F =Mi+Nj at the point

(x, y) is the scalar expression

∂N

∂x
− ∂M

∂y
.

This expression is also called the k-component of the curl, denoted

by (curlF ) · k or (∇× F ) · k.
(iii) Green’s Theorem (Flux-divergence or Normal Form): Let C be a

piecewise smooth, simple closed curve enclosing a region R in the

plane. Let F =Mi+Nj be a vector field with M and N having

continuous first partial derivatives in a open region containing R.

Then the outward flux of F across C equals the double integral of

divF = ∇ · F over the region R enclosed by C, that is,∫
C

F · n ds =
∫
C

M dy −N dx =

∫∫
R

(∇ · F ) dx dy.

(iv) Green’s Theorem (Circulation-Curl or Tangential Form): Let C

be a piecewise smooth, simple closed curve enclosing a region R

in the plane. Let F = Mi + Nj be a vector field with M and

N having continuous first partial derivatives in a open region

containing R. Then the counterclockwise circulation of F around

C equals the double integral of (curlF ) · k = (∇× F ) · k over R,

that is,∫
C

F · T ds =
∫
C

M dx+N dy =

∫∫
R

((∇× F ) · k) dx dy.

4.8. Surface Integrals.

(i) The area of the smooth surface

r(u, v) = f(u, v)i+ g(u, v)j + h(u, v)k, (u, v) ∈ [a, b]× [c, d]
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is given by

A =

∫∫
R

|ru × rv| dA =

∫ d

c

∫ b

a

|ru × rv| du dv.

(ii) The area of the surface f(x, y, z) = c over a closed and bounded

plane region R is given by∫
R

|∇F |
|∇F · p|

dA,

where P is p = i, j, or k is the unit normal vector to R and

∇F · p 6= 0.

(iii) For a smooth surface defined parametrically as

r(u, v) = f(u, v)i+ g(u, v)j + h(u, v)k, (u, v) ∈ R

and a contiunuous function G(x, y, z) defined on S, the surface

integral of G over S is given by∫∫
S

g(x, y, z) dσ =

∫∫
R

G(f(u, v), g(u, v), h(u, v))|ru × rv| du dv.

(iv) For a surface S given implicitly by f(x, y, z) = c, where F is a

continuously differentiable function, with S lying above its closed

and bounded shadow region R in the coordinate plane beneath it,

the surface integral of the continuous function G over S is given

by ∫∫
S

g(x, y, z) dσ =

∫∫
R

g(x, y, z)
|∇F |
|∇F · p|

dA,

where P is p = i, j, or k is the unit normal vector to R and

∇F · p 6= 0.

(v) For a surface S given explicitly as a graph z = f(x, y), where f

is a continuously differentiable function over a regions R in the

xy-plane, the surface integral of the continuous function G over S

is given by∫∫
S

g(x, y, z) dσ =

∫∫
R

G(x, y, f(x, y))
√
f 2
x + f 2

y + 1 dx dy.
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4.9. Stokes’ Theorem.

(i) Stokes’ Theorem: Let S be a piecewise smooth oriented surface

having a piecewise smooth boundary curve C. Let F = Mi +

Nj + Pk be a vector field whose components have continuous

first partial derivatives on an open region containing S. Then the

circulation of F around C in the direction counterclockwise with

respect to the surface’s unit normal vector n equals the integral

of (∇× F ) · n over S, that is,∫
C

F · dr =
∫∫

S

(∇× F ) · n dσ.

4.10. Gauss’ Divergence Theorem.

(i) Gauss’ Divergence Theorem: Let F be a vector field whose com-

ponents have continuous first partial derivatives, and let S be a

piecewise smooth oriented closed surface. The flux of F across S

in the direction of the surface’s outward unit normal field n equals

the integral of the divergence ∇ · F over the region D enclosed by

the surface, that is,∫∫
S

F · n dσ =

∫∫∫
D

∇ · F dV.

5. First order Ordinary Differential Equations


