MTH 201: Multivariable Calculus and Differential Equations

Semester 1, 2014-15

1. Three-dimensional geometry

1.1. Lines and planes.

(i) Vector, parametric, and symmetric equation of a line.
(ii) Vector and scalar equations of a plane.

1.2. Cylinders and quadric surfaces.

(i) Cylinders with examples.
(ii) General equation of a quadric surface with examples.

2. Multivarable Differential Calculus

2.1. Scalar and vector fields.

(i) Scalar and vector fields.
(ii) Open balls and open sets.
(iii) Interior, exterior, and boundary of a set.
(iv) Theorem: If A_{1} and A_{2} are open sets in \mathbb{R}^{1}, then $A_{1} \times A_{2}$ is open in \mathbb{R}^{2}.

2.2. Limits and continuity.

(i) Limits and continuity.
(ii) Theorem: If $\lim _{x \rightarrow a} f(x)=b$ and $\lim _{x \rightarrow a} g(x)=c$, then:
(a) $\lim _{x \rightarrow a}(f(x)+g(x))=b+c$
(b) $\lim _{x \rightarrow a} \lambda f(x)=\lambda b$, for every scalar λ
(c) $\lim _{x \rightarrow a} f(x) g(x)=b c$
(d) $\lim _{x \rightarrow a}\|f(x)\|=\|b\|$
(iii) Components of a vector field.
(iv) Theorem: A vector field is continuous if and only if each of its components are continuous.
(v) The identity function and polynomial functions are continuous on \mathbb{R}^{n}.
(vi) The composition of two continuous functions is continuous.
(vii) Example of a discontinuous scalar field that is continuous in each variable.
(viii) Derivative $f^{\prime}(a ; v)$ of a scalar field f with respect to a vector v.
(ix) Mean Value Theorem (for scalar fields) : Let $f^{\prime}(a+t v, v)$ exist for each $t \in[0,1]$. Then for some real number $\theta \in(0,1)$, we have

$$
f(a+y)-f(a)=f^{\prime}(z ; y), \text { where } z=a+\theta v
$$

2.3. Directional, partial and total derivatives.

(i) Directional derivatives and partial derivatives.
(ii) Directional derivatives and continuity.
(iii) Differentiable scalar field.
(iv) The total derivative.
(v) Theorem: If f is differentiable at a with total derivative T_{a}, then the derivative $f^{\prime}(a ; v)$ exists for every $a \in \mathbb{R}^{n}$, and we have

$$
T_{a}(v)=f^{\prime}(a ; v)
$$

Moreover, if $v=\left(v_{1}, \ldots, v_{n}\right)$, we have

$$
f^{\prime}(a ; v)=\sum_{k=1}^{n} D_{k} f(a) v_{k} .
$$

2.4. Gradient and tangent planes.

(i) The gradient of a scalar field.
(ii) Theorem: If a scalar field is differentiable at a, then f is contiunuous at a.
(iii) Sufficient condition for differentiability: If f has partial derivatives $D_{1} f, \ldots, D_{n} f$ in some n-ball $B(a)$ and are continuous at a, then f is differentiable at a.
(iv) Theorem (Chain rule for scalar fields): Let f be a scalar field defined on an open set S in \mathbb{R}^{n}, and let r be a vector-valued function which maps an interval J from \mathbb{R}^{1} into S. Define the composite $g=f \circ r$ on J by the $g(t)=f(r(t))$, if $t \in J$. Let $t \in J$ such that $r^{\prime}(t)$ exists and assume that f is differentiable at $r(t)$.Then $g^{\prime}(t)$ exists and is given by

$$
g^{\prime}(t)=\nabla f(a) \cdot r^{\prime}(t)
$$

where $a=r(t)$.
(v) Level sets and tangent planes.

2.5. Derivatives of vector fields.

(i) Derivatives of vector fields.
(ii) Theorem: If f is differentiable at a with total derivative T_{a}, then the derivative $f^{\prime}(a ; v)$ exists for every $a \in \mathbb{R}^{n}$, and we have

$$
T_{a}(v)=f^{\prime}(a ; v)
$$

Moreover, if $f=\left(f_{1}, \ldots, f_{m}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$, we have

$$
T_{a}(v)=\sum_{k=1}^{m} \nabla f_{k}(a) \cdot e_{k}=\left(\nabla f_{1}(a) \cdot v, \ldots, \nabla f_{m}(a) \cdot v\right) .
$$

(iii) Theorem: If a vector field is differentiable at a, then f is continuous at a.
(iv) Theorem (Chain Rule): Let f and g be vector fields such that the composition $h=f \circ g$ is defined in a neighborhood of a point a. Assume that g is differentiable at a, with total derivative $g^{\prime}(a)$. Let $b=g(a)$ and assume that f is differentiable at b, with total derivative $f^{\prime}(b)$. Then h is fifferentiable at a, and the total derivative $h^{\prime}(a)$ is given by

$$
h^{\prime}(a)=f^{\prime}(b) \circ g^{\prime}(a) .
$$

(v) Matrix form of chain rule.
(vi) Theorem (A sufficient condition for equality of mixed partial derivatives): Assume f is a scalar field such that the partial derivatives $D_{1} f, D_{2} f, D_{1,2} f$, and $D_{2,1} f$ exist on an open set S. If $f(a, b)$ is a point in S at which both $D_{1,2} f$ and $D_{2,1} f$ are continuous, we have

$$
D_{1,2} f(a, b)=D_{2,1} f(a, b) .
$$

(vii) Theorem (Sufficient condition for equality of mixed partial derivatives): Assume f is a scalar field such that the partial derivatives $D_{1} f, D_{2} f$, and $D_{2,1} f$ exist on an open set S containing. Assume further that $D_{2,1} f$ if continuous on S. Then the derivative $D_{1,2} f(a, b)$ exists and we have

$$
D_{1,2} f(a, b)=D_{2,1} f(a, b) .
$$

3. Applications of Derivatives

3.1. Partial differential equations.

(i) First order PDE of the form

$$
a \frac{\partial f(x, y)}{\partial x} \partial x+b \frac{\partial f(x, y)}{\partial y}=0 .
$$

(ii) Theorem: Let g be differentiable on \mathbb{R}^{1}, and let f be the scalar field defined on \mathbb{R}^{2} by the equation

$$
f(x, y)=g(a x-b y)
$$

where a and b are constants, not both zero. Then f satisfies the first-order PDE

$$
\begin{equation*}
a \frac{\partial f(x, y)}{\partial x} \partial x+b \frac{\partial f(x, y)}{\partial y}=0 \tag{1}
\end{equation*}
$$

everywhere in \mathbb{R}^{2}. Conversely, every differentiable solution necessarily has the form $g(x, y)=f(a x-b y)$.

3.2. The one-dimensional wave equation.

(i) the one-dimensional wave equation

$$
\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

(ii) Theorem (D'Alembert's solution to the wave equation): Let F and G be given by functions such that G is differentiable and F is twice differentiable on \mathbb{R}^{1}. Then the function f is given by the formula

$$
f(x, t)=\frac{F(x+c t)+F(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(s) d s
$$

satisfies the wave equation

$$
\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

and initial conditions $f(x, 0)=F(x), D_{2} f(x, 0)=G(x)$. Conversely, any function with equal mixed partials which satisfies the wave equation necessarily has the above form.
3.3. The derivative of functions defined implicitly.
(i) Theorem: Let F be a scalar field diferentiable on an open set T in \mathbb{R}^{n}. Assume that the equation

$$
F\left(x_{1}, \ldots, x_{n}\right)=0
$$

defines x_{n} explicitly as a differentiable function of x_{1}, \ldots, x_{n-1}, say

$$
x_{n}=f\left(x_{1}, \ldots, x_{n-1}\right),
$$

for all $\left(x_{1}, \ldots, x_{n-1}\right)$ in an open set $S \subset \mathbb{R}^{n-1}$. Then for each $k=1,2, \ldots, n-1$, the partial derivative $D_{k} f$ is given by the formula

$$
D_{k} f=-\frac{D_{k} F}{D_{n} F}
$$

for all points at which $D_{n} F \neq 0$. The partial derivatives $D_{k} f$ and $D_{n} f$ are to be evaluated at $\left(x_{1}, x_{2}, \ldots, x_{n-1}, f\left(x_{1}, \ldots, x_{n-1}\right)\right)$.
(ii) Jacobian determinant notation $\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$.
(iii) Suppose that we have two surfaces with implicit representations $F(x, y, z)=0$ and $G(x, y, z)=0$ that intersect along a curve C. Suppose that it is possible to solve x and y in terms of z, and the solutions are given by the equations $x=X(z)$ and $y=Y(z)$. Then

$$
X^{\prime}(z)=\frac{\partial(F, G) / \partial(y, z)}{\partial(F, G) / \partial(x, y)}, Y^{\prime}(z)=\frac{\partial(F, G) / \partial(z, x)}{\partial(F, G) / \partial(x, y)}
$$

3.4. Maximum and minimum values.

(i) Local maximum and minimum values of a function.
(ii) Theorem: A scalar field $f(x, y)$ has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=f_{y}(a, b)=0$.
(iii) Critical (or stationary) points and saddle points of a function.
(iv) Theorem (Second-derivative test): Let (a, b) be a critical point of a scalar field $f(x, y)$ with continuous second-order partial derivatives in a 2-ball (or disk) with center (a, b). Let $A=f_{x x}(a, b), B=$
$f_{x y}(a, b), C=f_{y y}(a, b)$, and let

$$
D=\operatorname{det}\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]=A C-B^{2}
$$

Then we have:
(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is neither a local maximum nor a local minimum (or (a, b) is a saddle point).
(d) If $D=0$, then the test is inconclusive.
(v) Theorem (Extreme value theorem): If a scalar field $f(x, y)$ is continuous on a closed and bounded (i.e. compact) set $A \in \mathbb{R}^{2}$, then f attains its absolute maximum and absolute minimum values at points in A.
(vi) Absolute maximum and minimum values.
(vii) Theorem (Lagrange's Theorem): Let f and g have continuous partial derivatives such that f has an extremum at a point (a, b) on the smooth constraint curve $g(x, y)=c$. If $\nabla g(a, b) \neq 0$, there exists a real number λ such that

$$
\nabla f(a, b)=\lambda \nabla g(a, b)
$$

(viii) Method of Lagrange multipliers: Let f and g satisfy the hypothesis of Lagrange's Theorem, and let f have a maximum or minimum subject to the constraint $g(x, y)=k$. To find the extremal values of f, we use the following steps:
Step 1: Simultaneously solve the equations $\nabla f(x, y)=\lambda g(x, y)$ and $g(x, y)=k$ by solving the following system of equations.

$$
\begin{gathered}
f_{x}(x, y)=\lambda g_{x}(x, y) \\
f_{y}(x, y)=\lambda g_{y}(x, y) \\
g(x, y)=k
\end{gathered}
$$

Step 2: Evaluate f at each solution point obtained in Step 1. The largest value yields the maximum of f subject to the constraint, and the smallest value yields the minimum of f subject to the constraint.

4. MULTIVARIABLE INTEGRAL CALCULUS

4.1. Double Integrals.

(i) Intepreting the double inegral as volume of the solid bounded below by a region R and above by $z=f(x, y)$.
(ii) Double integrals over a rectangular region $R:[a, b] \times[c, d]$.
(iii) Thorem (Fubini weaker form): If $f(x, y)$ is continuous throughout the region $R:[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

(iv) Double integrals over a general region R.
(v) Thorem (Fubini stronger form): Let $f(x, y)$ be continuous on a region R.
(a) If R is defined by $a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)$, with g_{1} and g_{2} continuous on $[a, b]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(b) If R is defined by $c \leq y \leq d, h_{1}(x) \leq x \leq h_{2}(x)$, with h_{1} and h_{2} continuous on $[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y .
$$

(vi) If $f(x, y)$ and $g(x, y)$ are continuous on the bounded region R, then the following properties hold.
(a) $\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A$, for any $c \in \mathbb{R}$.
(b) $\iint_{R}(f(x, y) \pm g(x, y)) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A$.
(c) $\iint_{R} f(x, y) d A \geq 0$, if $f(x, y) \geq 0$ on R.
(d) $\iint_{R}^{R} f(x, y) d A \geq \iint_{R} g(x, y) d A$, if $f(x, y) \geq g(x, y)$ on R.
(e) $\iint_{R} f(x, y) d A \geq \iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$, if R is the union of two nonoverlapping regions R_{1} and R_{2}.
(vii) The area of a closed, bounded plane region R is given by

$$
A=\iint_{A} d A
$$

(viii) The average value of an integrable function f over a region R of area A is given by

The average value of f over $R=\frac{1}{A} \iint_{R} f d A$.

4.2. Triple integrals.

(i) Integrability of $F(x, y, z)$ over a closed, bounded region D in \mathbb{R}^{3}.
(ii) The volume of a closed, bounded region D in space is given by

$$
V=\iiint_{D} d V
$$

4.3. Substitution in multiple integrals.

(i) Theorem (Substitution in double integrals): Suppose that a region G in the $u v$-plane is transformed one-to-one into a region R in the $x y$-plane by equations of the form $x=g(u, v)$ and $y=h(u, v)$. Then any function $f(x, y)$ defined on R can be thought of as a function $f(g(u, v), h(u, v))$ defined on G. Moreover, if g, h, and f have continuous partial derivatives and $\frac{\partial(x, y)}{\partial(u, v)}$ is zero only at isolated points, then

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

(ii) Theorem (Substitution in triple integrals): Suppose that a region G in the $u v w$-space is transformed one-to-one into a region R in the $x y z$-space by equations of the form $x=g(u, v, w), y=h(u, v, w)$, and $z=k(u, v, w)$. Then any function $f(x, y, z)$ defined on R can be thought of as a function $f(g(u, v, w), h(u, v, w), k(u, v, w))$ defined on G. Moreover, if g, h, and k have continuous first partial derivatives and $\frac{\partial(x, y)}{\partial(u, v)}$ is zero only at isolated points, then

$$
\iiint_{D} f(x, y) d x d y d z=\iiint_{G} f(g(u, v, w), h(u, v, w), k(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

4.4. Double integrals in polar coordinates.

(i) Polar Coordinates represent a point P by the ordered pairs (r, θ) in which
(a) r is distance of P from ther origin O, and
(b) θ is the directed angle from the initial ray originating at O (along the positive direction of x-axis) to the ray $O P$.
(ii) The rectangular (x, y) and polar (r, θ) coordinate systems are related by the following set of equations

$$
x=r \cos \theta, y=r \sin \theta, r^{2}=x^{2}+y^{2}, \text { and } \tan \theta=\frac{y}{x} .
$$

(iii) Theorem: The area of a closed and bounded region R in polar coordinates is given by

$$
A=\iint_{R} r d r d \theta .
$$

(iv) Theorem (Double integral in polar coordinates): Suppose that a region G in the $r \theta$-plane is transformed one-to-one into a region R in the $x y$-plane by polar equations of the form $x=r \cos \theta$ and $y=r=\sin \theta$. Then

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

4.5. Triple integrals in cylindrical and spherical cordinates.

(i) Cylindrical coordinates represent a point P in space ordered by triples (r, θ, z) in which
(a) r and θ are the polar coordinates of the verical projection of P onto the $x y$-plane, and
(b) z is the rectangular vertical coordinate.
(ii) The equations relating rectangular (x, y, z) and cylindrical (r, θ, z) coordinates are:

$$
\begin{gathered}
x=r \cos \theta, y=r \sin \theta, z=z \\
r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}
\end{gathered}
$$

Theorem (Triple integral in cylindrical coordinates): Suppose that a region G in the $r \theta z$-space is transformed one-to-one into a region
R in the $x y z$-space by cylindrical equations of the form $x=r \cos \theta$, $y=r \sin \theta$, and $z=z$. Then

$$
\iiint_{R} f(x, y, z) d x d y d z=\iiint_{G} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta .
$$

(iii) Spherical coordinates represent a point P in space ordered by triples (ρ, ϕ, θ) in which
(a) ρ is the distance from P to the origin,
(b) θ is the angle from cylindrical coordinates $(0 \leq \theta \leq 2 \pi)$, and
(c) ϕ is the angle $\overline{O P}$ makes with the positive z-axis $(0 \leq \phi \leq \pi)$.
(iv) The equations relating spherical (ρ, θ, ϕ) to cartesian (x, y, z) and cylindrical (r, θ, z) coordinates are:

$$
\begin{gathered}
r=\rho \sin \phi, x=r \cos \theta=\rho \sin \phi \cos \theta, \\
z=\rho \cos \phi, y=r \sin \theta=\rho \sin \phi \sin \theta, \\
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}} .
\end{gathered}
$$

(v) Theorem (Triple integral in spherical coordinates): Suppose that a region G in the $\rho \phi \theta$-space is transformed one-to-one into a region R in the $x y z$-space by spherical equations of the form $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$, and $z=\rho \cos \phi$. Then

$$
\iiint_{R} f(x, y, z) d x d y d z=\iiint_{G} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

4.6. Line integrals.

(i) Line Integral: Let F be a vector field with continuous components defined along a smooth curve C parametrized by $r(t), t \in[a, b]$. Then the line integral of F along C is

$$
\begin{gathered}
\int_{C} F \cdot T d s=\int_{C}\left(F \cdot \frac{d r}{d s}\right) d s=\int_{C} F \cdot d r=\int_{a}^{b} F(r(t)) \cdot \frac{d r}{d t} d t \\
r=\rho \sin \phi, x=r \cos \theta=\rho \sin \phi \cos \theta \\
z=\rho \cos \phi, y=r \sin \theta=\rho \sin \phi \sin \theta \\
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}
\end{gathered}
$$

(ii) Let C be a smooth curve parametrized by $r(t), t \in[a, b]$, and F be a continuous force field over a region containing C. Then the work done in moving an object from the point $A=r(a)$ ro the point $B=r(b)$ along C is given by

$$
W=\int_{C} F \cdot T d s=\int_{a}^{b} F(r(t)) \cdot \frac{d r}{d t} d t
$$

(iii) Let $F=M i+N j+P k$ defined along the smooth curve $C: r(t)=$ $g(t) i+h(t) j+k(t) k, t \in[a, b]$. Then the equivalent forms of the work integral are:

$$
\begin{aligned}
W & =\int_{C} F \cdot T d s \\
& =\int_{c} F \cdot d r \\
& =\int_{a}^{b} F \cdot \frac{d r}{d t} d t \\
& =\int_{a}^{b}\left(M \frac{d x}{d t}+N \frac{d y}{d t}+P \frac{d z}{d t}\right) d t \\
& =\int_{C} M d x+N d y+P d z
\end{aligned}
$$

(iv) If $r(t)$ parametrizes a smooth curve C in the domain of a continuous velocity field F, then the flow along the curve from $A=r(a)$ to $B=r(b)$ is given by

$$
\int_{C} F \cdot T d s
$$

(v) If C is a smooth simple closed curve in the domain of a continuous vector field $F=M(x, y) i+N(x, y) j$ in the plane, and if N is the outward pointing unit normal vector on C, the flux of F across C is given by

$$
\int_{C} F \cdot n d s
$$

Furthermore, if $F=M i+N j$, then the flux of F across C is given by

$$
\int_{C} M d y-N d x
$$

4.7. Green's Theorem.

(i) The divergence (or the flux density) of a vector field $F=M i+N j$ at the point (x, y) is

$$
\operatorname{div} F=\nabla \cdot F=\frac{\partial M}{\partial x}+\frac{\partial M}{\partial y} .
$$

(ii) The circulation density of a vector field $F=M i+N j$ at the point (x, y) is the scalar expression

$$
\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}
$$

This expression is also called the k-component of the curl, denoted by $(\operatorname{curl} F) \cdot k$ or $(\nabla \times F) \cdot k$.
(iii) Green's Theorem (Flux-divergence or Normal Form): Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $F=M i+N j$ be a vector field with M and N having continuous first partial derivatives in a open region containing R. Then the outward flux of F across C equals the double integral of $\operatorname{div} F=\nabla \cdot F$ over the region R enclosed by C, that is,

$$
\int_{C} F \cdot n d s=\int_{C} M d y-N d x=\iint_{R}(\nabla \cdot F) d x d y .
$$

(iv) Green's Theorem (Circulation-Curl or Tangential Form): Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $F=M i+N j$ be a vector field with M and N having continuous first partial derivatives in a open region containing R. Then the counterclockwise circulation of F around C equals the double integral of $(\operatorname{curl} F) \cdot k=(\nabla \times F) \cdot k$ over R, that is,

$$
\int_{C} F \cdot T d s=\int_{C} M d x+N d y=\iint_{R}((\nabla \times F) \cdot k) d x d y .
$$

4.8. Surface Integrals.

(i) The area of the smooth surface

$$
r(u, v)=f(u, v) i+g(u, v) j+h(u, v) k,(u, v) \in[a, b] \times[c, d]
$$

is given by

$$
A=\iint_{R}\left|r_{u} \times r_{v}\right| d A=\int_{c}^{d} \int_{a}^{b}\left|r_{u} \times r_{v}\right| d u d v .
$$

(ii) The area of the surface $f(x, y, z)=c$ over a closed and bounded plane region R is given by

$$
\int_{R} \frac{|\nabla F|}{|\nabla F \cdot p|} d A
$$

where P is $p=i, j$, or k is the unit normal vector to R and $\nabla F \cdot p \neq 0$.
(iii) For a smooth surface defined parametrically as

$$
r(u, v)=f(u, v) i+g(u, v) j+h(u, v) k,(u, v) \in R
$$

and a contiunuous function $G(x, y, z)$ defined on S, the surface integral of G over S is given by

$$
\iint_{S} g(x, y, z) d \sigma=\iint_{R} G(f(u, v), g(u, v), h(u, v))\left|r_{u} \times r_{v}\right| d u d v
$$

(iv) For a surface S given implicitly by $f(x, y, z)=c$, where F is a continuously differentiable function, with S lying above its closed and bounded shadow region R in the coordinate plane beneath it, the surface integral of the continuous function G over S is given by

$$
\iint_{S} g(x, y, z) d \sigma=\iint_{R} g(x, y, z) \frac{|\nabla F|}{|\nabla F \cdot p|} d A
$$

where P is $p=i, j$, or k is the unit normal vector to R and $\nabla F \cdot p \neq 0$.
(v) For a surface S given explicitly as a graph $z=f(x, y)$, where f is a continuously differentiable function over a regions R in the $x y$-plane, the surface integral of the continuous function G over S is given by

$$
\iint_{S} g(x, y, z) d \sigma=\iint_{R} G(x, y, f(x, y)) \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y .
$$

4.9. Stokes' Theorem.

(i) Stokes' Theorem: Let S be a piecewise smooth oriented surface having a piecewise smooth boundary curve C. Let $F=M i+$ $N j+P k$ be a vector field whose components have continuous first partial derivatives on an open region containing S. Then the circulation of F around C in the direction counterclockwise with respect to the surface's unit normal vector n equals the integral of $(\nabla \times F) \cdot n$ over S, that is,

$$
\int_{C} F \cdot d r=\iint_{S}(\nabla \times F) \cdot n d \sigma
$$

4.10. Gauss' Divergence Theorem.

(i) Gauss' Divergence Theorem: Let F be a vector field whose components have continuous first partial derivatives, and let S be a piecewise smooth oriented closed surface. The flux of F across S in the direction of the surface's outward unit normal field n equals the integral of the divergence $\nabla \cdot F$ over the region D enclosed by the surface, that is,

$$
\iint_{S} F \cdot n d \sigma=\iiint_{D} \nabla \cdot F d V
$$

5. First order Ordinary Differential Equations
